Skip to main content

Compiling Expressions

The Compute Engine can compile LaTeX expressions to JavaScript functions!

Introduction

Some expressions can take a long time to evaluate numerically, for example if they contain a large number of terms or involve a loop $(\sum$ or $\prod$).

In this case, it is useful to compile the expression into a JavaScript function that can be evaluated much faster.

For example this approximation: \pi \approx \textstyle\sqrt{6\sum^{10^6}_{n=1}\frac{1}{n^2}}

// import { parse, compile } from '@cortex-js/compute-engine'; const expr = parse("\\sqrt{6\\sum^{10^5}_{n=1}\\frac{1}{n^2}}"); // Numerical evaluation using the Compute Engine console.time('evaluate'); const evaluated = expr.evaluate(); console.timeEnd('evaluate'); console.log(evaluated.toString()); // Compilation to a JavaScript function and execution console.time('compile'); const result = compile(expr); console.timeEnd('compile'); console.log(result.run?.());

Compiling

To get a compiled version of an expression use the compile() function:

import { compile } from '@cortex-js/compute-engine';

const f = compile("2\\prod_{n=1}^{\\infty} \\frac{4n^2}{4n^2-1}");

To evaluate the compiled expression call the run method on the CompilationResult returned by compile():

console.log(f.run());
// ➔ 3.141592653589793

If the expression cannot be compiled, the result.success property will be false.

Validation and Fallback Behavior

Compilation APIs enforce runtime contracts to catch malformed extension payloads early:

  • ce.registerCompilationTarget(name, target) validates target names and required LanguageTarget methods (getOperators(), getFunctions(), createTarget(), compile()).
  • compile(expr, options) validates option payload shape for to, target, operators, functions, vars, imports, preamble, and fallback.

By default, compile() falls back to interpretation (success: false with a run function). To disable fallback and fail fast, set fallback: false.

What Can Be Compiled

Three kinds of expressions can be compiled, and each produces a run function with a different calling convention.

Plain Expressions

A plain expression like x^2 + 1 has free variables (unknowns). The compiled run function takes a vars object mapping variable names to values:

// import { compile } from '@cortex-js/compute-engine'; const f = compile("n^2"); for (let i = 1; i < 10; i++) console.log(f.run({ n: i }));

An expression with no unknowns can be called with no arguments:

// import { compile } from '@cortex-js/compute-engine'; console.log(compile("\\sqrt{6\\sum^{100}_{n=1}\\frac{1}{n^2}}").run()); // ➔ 3.1320...

Lambda Expressions

A lambda expression uses \mapsto (\mapsto) to explicitly declare parameters. The compiled run function takes positional arguments:

// import { compile } from '@cortex-js/compute-engine'; // Single parameter const f = compile("x \\mapsto x^2 + 1"); console.log(f.run(3)); // ➔ 10 // Multiple parameters const g = compile("(x, y) \\mapsto x^2 + y^2"); console.log(g.run(3, 4)); // ➔ 25

Lambdas are useful when the variable name is user-specified rather than assumed by convention. A lambda like \theta \mapsto 1 + \cos(\theta) makes the parameter explicit, avoiding ambiguity.

Tuple Expressions

A tuple expression like (\cos(t), \sin(t)) compiles to a function that returns a JavaScript array:

// import { compile } from '@cortex-js/compute-engine'; const f = compile("(\\cos(t), \\sin(t))"); const [x, y] = f.run({ t: Math.PI / 5 }); console.log(x, y);

This is particularly useful for parametric curves. Both Tuple and List expressions compile to arrays.

Control Structures

Control structures such as conditionals, loops, and blocks can be compiled to JavaScript.

If and Which (Conditionals)

If expressions compile to ternary operators and Which expressions (used by \begin{cases}) compile to chained ternaries:

// import { compile } from '@cortex-js/compute-engine'; // If expression const f = compile("\\text{if } x > 0 \\text{ then } x \\text{ else } -x"); console.log(f.run({ x: -5 })); // ➔ 5 // Which / cases expression const g = compile("\\begin{cases} x^2 & x > 0 \\\\ -x & x < 0 \\\\ 0 \\end{cases}"); console.log(g.run({ x: 3 })); // ➔ 9

When no condition matches, Which returns NaN.

Sum and Product

Sum and Product with numeric bounds compile to for loops with accumulator variables:

// import { compile } from '@cortex-js/compute-engine'; // Fourier approximation const f = compile("\\sum_{k=0}^{5} \\frac{\\sin((2k+1)x)}{2k+1}"); console.log(f.run({ x: 1.0 }));

Loop, Break, Continue, Return

Loop expressions with a range compile to for loops. Break, Continue, and Return compile to their JavaScript equivalents:

// import { compile } from '@cortex-js/compute-engine'; const f = compile("\\text{for } i \\text{ from } 1 \\text{ to } 10 \\text{ do } i^2"); console.log(f.run()); // ➔ 100 (last iteration value)

Block and where

Block expressions create scoped variable bindings. The where syntax provides a convenient way to define local variables:

// import { compile } from '@cortex-js/compute-engine'; const f = compile("r^2 \\text{ where } r \\coloneq x^2 + y^2"); console.log(f.run({ x: 3, y: 4 })); // ➔ 625

Variable Names

The compiled function expects variable names as they appear in the parsed MathJSON expression. Greek letters become their English names:

LaTeXVariable Name
x, y"x", "y"
t"t"
\theta"theta"
\alpha"alpha"
u, v"u", "v"

Use the wrong name and you'll get NaN silently:

const f = compile("1 + \\cos(\\theta)");

f.run({ theta: 0.5 }); // ✓ correct → 1.8776
f.run({ x: 0.5 }); // ✗ wrong key — returns NaN

To discover the variable names in an expression, use expr.unknowns (or its alias expr.freeVariables). These properties return only the free variables — symbols that are not constants, operators, or bound by scoping constructs like Sum or Product:

console.log(parse("n^2").unknowns); console.log(parse("a^2+b^3").unknowns); console.log(parse("\\sin(\\theta)").unknowns);

Complex Numbers

The JavaScript target has full complex arithmetic support. When the compiler detects that a subexpression involves complex values, it automatically emits complex-aware code for all operations touching that subexpression.

When Complex Arithmetic Is Used

The compiler decides at compile time whether each subexpression is complex-valued. This happens when:

  • The expression contains i (ImaginaryUnit)
  • A symbol has been declared with a complex type
  • An operation is applied to a complex-valued operand

The detection is static — based on the expression's structure, not on runtime values. So \sqrt{x} compiles to real Math.sqrt because x has no declared complex type, even though Math.sqrt(-1) returns NaN at runtime.

To get complex results from \sqrt{x}, you'd need to make the expression explicitly complex, e.g., \sqrt{x + 0i}.

Result Format

When an expression is complex-valued, the compiled run function returns a { re: number, im: number } object instead of a plain number:

// import { compile } from '@cortex-js/compute-engine'; // Explicit complex expression — compiler knows it's complex const f = compile("(1 + 2i)^2"); console.log(f.run()); // ➔ { re: -3, im: 4 }

Complex-aware operations include all the standard arithmetic (+, -, *, /), trigonometric functions (sin, cos, tan, and their inverses and hyperbolic variants), exp, ln, sqrt, pow, abs, arg, conjugate, Re, and Im.

Extracting Real and Imaginary Parts

Use Re and Im to extract components from a complex expression:

// import { compile } from '@cortex-js/compute-engine'; const f = compile("\\Re((1 + 2i)^2)"); console.log(f.run()); // ➔ -3 (a plain number, not an object)

Mixing Real and Complex Operands

When a complex operand is combined with a real operand, the result is complex:

// import { compile } from '@cortex-js/compute-engine'; const f = compile("x + 2i"); console.log(f.run({ x: 3 })); // ➔ { re: 3, im: 2 }

GLSL Target

The GLSL target also supports complex arithmetic, but represents complex numbers as vec2 values — the .x component is the real part, .y is the imaginary part:

// Complex literal: 3 + 4i
vec2(3.0, 4.0)

// Imaginary unit
vec2(0.0, 1.0)

Simple operations like addition, subtraction, negation, and scalar multiplication use native vec2 operations. More involved operations — complex multiplication, division, exponentiation, and transcendentals — use helper functions emitted in a preamble block:

OperationGLSL Helper
z * w_gpu_cmul(z, w)
z / w_gpu_cdiv(z, w)
z ^ w_gpu_cpow(z, w)
sqrt(z)_gpu_csqrt(z)
exp(z)_gpu_cexp(z)
ln(z)_gpu_cln(z)

The preamble is dependency-aware: each helper declares its prerequisites (e.g., _gpu_cpow depends on _gpu_cexp, _gpu_cmul, and _gpu_cln), and only the needed functions are emitted in topological order. If the expression is purely real, no preamble is generated.

Component extraction maps to native swizzle operations:

Re(z)        →  (z).x
Im(z) → (z).y
Abs(z) → length(z) // built-in
Arg(z) → atan(z.y, z.x)
Conjugate(z) → vec2(z.x, -z.y)

The same complex value analysis used by the JavaScript target determines whether each subexpression needs complex or real code paths in GLSL.

Real-Only Mode

If you don't need complex results (e.g., for plotting), pass { realOnly: true } to automatically convert complex returns: the real part is returned when the imaginary part is zero, and NaN is returned otherwise.

// import { compile } from '@cortex-js/compute-engine'; // Without realOnly — returns { re: 5, im: 0 } console.log(compile("(1 + 0i) * 5").run()); // With realOnly — returns 5 (plain number) console.log(compile("(1 + 0i) * 5", { realOnly: true }).run());

This avoids per-evaluation type checks in calling code.

Custom Operators

By default, operators like +, -, *, / compile to their JavaScript equivalents. However, you can override operators to use custom function calls instead. This is particularly useful for:

  • Vector and matrix operations - where [1,2,3] + [4,5,6] should call a custom add() function
  • Custom domain-specific languages - where operations have specialized semantics
  • Type-specific operations - where the same operator behaves differently for different types

Basic Usage

Override operators by passing an operators option to compile():

import { compile } from '@cortex-js/compute-engine';

const result = compile("v + w", {
operators: {
Add: ['add', 11], // Convert + to add() function
Multiply: ['mul', 12] // Convert * to mul() function
},
functions: {
add: (a, b) => a.map((v, i) => v + b[i]),
mul: (a, b) => a.map((v, i) => v * b[i])
}
});

const value = result.run({ v: [1, 2, 3], w: [4, 5, 6] });
console.log(value);
// ➔ [5, 7, 9]

The operator override format is [functionName, precedence]:

  • functionName: The name of the function to call (alphanumeric identifier)
  • precedence: Numeric precedence level (higher = tighter binding)

Function-Based Overrides

You can also use a function to conditionally override operators:

import { compile } from '@cortex-js/compute-engine';

const result = compile("v + w", {
operators: (op) => {
// Only override Add, let other operators use defaults
if (op === 'Add') return ['vectorAdd', 11];
return undefined;
},
functions: {
vectorAdd: (a, b) => a.map((v, i) => v + b[i])
}
});

Complex Expressions

Operator overrides work with complex nested expressions:

import { compile } from '@cortex-js/compute-engine';

const result = compile("(a + b) * c", {
operators: {
Add: ['add', 11],
Multiply: ['mul', 12]
},
functions: {
add: (a, b) => a.map((v, i) => v + b[i]),
mul: (a, b) => a.map((v, i) => v * b[i])
}
});

const value = result.run({
a: [1, 2, 3],
b: [4, 5, 6],
c: [2, 2, 2]
});
console.log(value);
// ➔ [10, 14, 18] // (a + b) * c = ([1,2,3] + [4,5,6]) * [2,2,2]

Important Notes

Canonical Form: Expressions are canonicalized before compilation, which may affect operator usage:

  • Subtraction a - b is canonicalized to Add(a, Negate(b))
  • To handle subtraction with custom operations, override both Add and Negate

Symbol vs Function Names:

  • Function names (alphanumeric like add, mul) compile to function calls: add(a, b)
  • Symbol operators (like +, -, ) compile to infix operators: a + b

Partial Overrides: You can override only some operators; others will use their default JavaScript implementations.

Example: Complete Vector Math

// import { compile } from '@cortex-js/compute-engine'; // Define vector operations function add(a, b) { return a.map((v, i) => v + b[i]); } function mul(a, b) { return a.map((v, i) => v * b[i]); } function neg(a) { return a.map(v => -v); } const f = compile("u * v + w - z", { operators: { Add: ['add', 11], Multiply: ['mul', 12], Negate: ['neg', 14] }, functions: { add, mul, neg } }); console.log(f.run({ u: [2, 3, 4], v: [1, 1, 1], w: [5, 6, 7], z: [1, 2, 3] })); // ➔ [6, 7, 8] // u*v + w - z = [2,3,4] + [5,6,7] - [1,2,3]

Advanced: Custom Compilation Targets

For advanced use cases, you can create completely custom compilation targets by using the exported CompileTarget interface and BaseCompiler class.

Exported Interfaces

import {
ComputeEngine,
BaseCompiler,
JavaScriptTarget,
type CompileTarget,
} from '@cortex-js/compute-engine';

Creating a Custom Target

Define a custom target object that implements the CompileTarget interface:

import { BaseCompiler } from '@cortex-js/compute-engine';

const myTarget = {
language: 'my-dsl',
operators: (op) => {
const ops = {
Add: ['ADD', 11],
Multiply: ['MUL', 12],
Divide: ['DIV', 13],
};
return ops[op];
},
functions: (id) => id.toUpperCase(),
var: (id) => `VAR("${id}")`,
string: (s) => `"${s}"`,
number: (n) => n.toString(),
ws: () => ' ',
preamble: '',
indent: 0,
};

const code = BaseCompiler.compile("x + y * 2", myTarget);
console.log(code);
// → ADD(VAR("x"), MUL(VAR("y"), 2))

Example: SQL-like Target

import { BaseCompiler } from '@cortex-js/compute-engine';

const sqlTarget = {
language: 'sql',
operators: (op) => {
return {
Equal: ['=', 8],
NotEqual: ['<>', 8],
And: ['AND', 4],
Or: ['OR', 3],
}[op];
},
functions: (id) => ({ Abs: 'ABS', Sqrt: 'SQRT' }[id]),
var: (id) => `"${id}"`, // Quote column names
string: (s) => `'${s.replace(/'/g, "''")}'`,
number: (n) => n.toString(),
ws: () => ' ',
preamble: '',
indent: 0,
};

const sql = BaseCompiler.compile("x > 10 \\land y \\leq 20", sqlTarget);
console.log(`SELECT * FROM table WHERE ${sql}`);
// → SELECT * FROM table WHERE AND("x" > 10, "y" <= 20)

For more examples of custom targets, see examples/compile-custom-target.js.

Plugin Architecture: Registering Custom Targets

The Compute Engine includes a plugin architecture that allows you to register custom compilation targets and switch between them easily.

Built-in Targets

The Compute Engine comes with these compilation targets:

  • javascript (default) - Compiles to executable JavaScript functions
  • glsl - Compiles to GLSL (OpenGL Shading Language) for WebGL shaders
  • python - Compiles to Python/NumPy code for scientific computing (requires registration)
  • interval-js - Compiles to JavaScript using interval arithmetic for reliable function plotting
  • interval-glsl - Compiles to GLSL using interval arithmetic for GPU-based plotting

Compiling to Different Targets

Use the to option to specify the target language:

import { parse, compile } from '@cortex-js/compute-engine';

const expr = parse("x^2 + y^2");

// Compile to JavaScript (default)
const jsResult = compile(expr);
console.log(jsResult.run({ x: 3, y: 4 })); // → 25

// Compile to GLSL
const glslResult = compile(expr, { to: 'glsl' });
console.log(glslResult.code); // → pow(x, 2.0) + pow(y, 2.0)

Python/NumPy Target

The Compute Engine includes a complete Python/NumPy compilation target for scientific computing:

import { ComputeEngine, PythonTarget, compile } from '@cortex-js/compute-engine';

const ce = new ComputeEngine();

// Register the Python target with NumPy support
ce.registerCompilationTarget(
'python', new PythonTarget({ includeImports: true })
);

// Compile expressions to Python/NumPy code
const f = compile("\\sin(x) + \\cos(y)", { to: 'python' });
console.log(f.code);
// → import numpy as np
//
// np.sin(x) + np.cos(y)

Generating Python Functions

The PythonTarget can generate complete Python functions:

import { PythonTarget } from '@cortex-js/compute-engine';

const python = new PythonTarget({ includeImports: true });

const func = python.compileFunction(
"\\sqrt{x^2 + y^2}",
'euclidean_distance',
['x', 'y'],
'Calculate Euclidean distance between two points'
);

console.log(func);

Generates:

import numpy as np

def euclidean_distance(x, y):
"""Calculate Euclidean distance between two points"""
return np.sqrt(x ** 2 + y ** 2)

Use Cases

The Python target is ideal for:

  • Scientific Computing: Generate NumPy code for numerical analysis
  • Machine Learning: Create feature engineering functions
  • Data Analysis: Convert formulas to Pandas/NumPy operations
  • Education: Show Python equivalents of mathematical notation
  • Code Generation: Automated function creation from LaTeX

Lambda Functions

Generate Python lambda expressions:

const lambda = python.compileLambda("x^2 + 2x + 1", ['x']);
console.log(lambda);
// → lambda x: x ** 2 + 2 * x + 1

Supported Functions

The Python target maps to NumPy functions:

  • Trigonometric: sinnp.sin, cosnp.cos, etc.
  • Exponential: expnp.exp, lnnp.log
  • Power: x^nx ** n, sqrtnp.sqrt
  • Statistics: sumnp.sum, meannp.mean
  • Linear Algebra: dotnp.dot, crossnp.cross

For complete documentation, see the Python Target Guide.

Interval Arithmetic Targets

The Compute Engine includes interval arithmetic compilation targets designed for reliable function plotting. These targets operate on intervals [lo, hi] rather than point values, providing guaranteed enclosures of the true result and detecting singularities.

Why Interval Arithmetic?

Standard plotting approaches sample functions at regular intervals, which can:

  • Miss features (spikes between sample points)
  • Create aliasing (high-frequency oscillations appear as lower frequencies)
  • Produce wild line segments at singularities (like tan(π/2))
  • Render discontinuities as vertical lines

Interval arithmetic addresses these by:

  • Returning wide intervals when uncertainty is high (triggers refinement)
  • Explicitly detecting division by zero and other singularities
  • Indicating when function domains are restricted

JavaScript Interval Target (interval-js)

import { compile } from '@cortex-js/compute-engine';

const f = compile("\\sin(x) / x", { to: 'interval-js' });

// Call with interval inputs
const value = f.run({ x: { lo: -0.1, hi: 0.1 } });
console.log(value);
// → { kind: 'singular' } // Division by interval containing zero

The function accepts an object where keys are variable names and values are Interval objects with lo and hi properties.

Result Types

The compiled function returns an IntervalResult discriminated union:

KindMeaningExample
intervalNormal result with boundssin([0, π]){ kind: 'interval', value: { lo: 0, hi: 1 } }
emptyNo valid output valuessqrt([-2, -1]){ kind: 'empty' }
entireResult spans all realsDivision with mixed signs near zero
singularContains a pole/asymptote1 / [-1, 1]{ kind: 'singular' }
partialPartially valid domainsqrt([-1, 4]){ kind: 'partial', value: { lo: 0, hi: 2 }, domainClipped: 'lo' }

Examples

import { compile } from '@cortex-js/compute-engine';

// Simple function - normal result
const sinResult = compile('\\sin(x)', { to: 'interval-js' });
sinResult.run({ x: { lo: 0, hi: Math.PI } });
// → { kind: 'interval', value: { lo: 0, hi: 1 } }

// Singularity detection
const recipResult = compile('1/x', { to: 'interval-js' });
recipResult.run({ x: { lo: -1, hi: 1 } });
// → { kind: 'singular' }

// Partial domain
const sqrtResult = compile('\\sqrt{x}', { to: 'interval-js' });
sqrtResult.run({ x: { lo: -1, hi: 4 } });
// → { kind: 'partial', value: { lo: 0, hi: 2 }, domainClipped: 'lo' }

// Multi-variable expressions
const fnResult = compile('x^2 + y', { to: 'interval-js' });
fnResult.run({ x: { lo: 1, hi: 2 }, y: { lo: 0, hi: 0.5 } });
// → { kind: 'interval', value: { lo: 1, hi: 4.5 } }

GLSL Interval Target (interval-glsl)

For GPU-based plotting, compile to GLSL interval arithmetic:

import { IntervalGLSLTarget } from '@cortex-js/compute-engine';

const target = new IntervalGLSLTarget();

// Generate complete shader code
const shader = target.compileShaderFunction("\\sin(x) + y^2", {
functionName: 'evaluateInterval',
parameters: ['x', 'y'],
version: '300 es'
});

console.log(shader);
// Outputs complete GLSL shader with interval arithmetic library

In GLSL, intervals are represented as vec2 where .x is the lower bound and .y is the upper bound. The generated shader includes status flags for singularity detection.

Plotting Integration

The interval results enable adaptive plotting algorithms:

function shouldSubdivide(result, tolerance) {
switch (result.kind) {
case 'singular':
case 'entire':
return true; // Always refine near singularities
case 'interval':
case 'partial':
return (result.value.hi - result.value.lo) > tolerance;
case 'empty':
return false; // Nothing to plot
}
}

Registering Custom Targets

You can also create your own compilation targets using ce.registerCompilationTarget():

import { ComputeEngine, BaseCompiler, compile } from '@cortex-js/compute-engine';

const ce = new ComputeEngine();

// Define a custom target (e.g., for R, MATLAB, etc.)
class CustomTarget {
getOperators() {
return {
Add: ['+', 11],
Multiply: ['*', 12],
// ... other operators
};
}

getFunctions() {
return {
Sin: 'sin',
Cos: 'cos',
// ... other functions
};
}

createTarget() {
return {
language: 'custom',
operators: (op) => this.getOperators()[op],
functions: (id) => this.getFunctions()[id],
var: (id) => id,
string: (str) => JSON.stringify(str),
number: (n) => n.toString(),
indent: 0,
ws: () => ' ',
preamble: '',
};
}

compile(expr, options = {}) {
const target = this.createTarget();
const code = BaseCompiler.compile(expr, target);

return {
target: 'custom',
success: true,
code,
};
}
}

// Register and use
ce.registerCompilationTarget('custom', new CustomTarget());
const result = compile("x + y * 2", { to: 'custom' });
console.log(result.code);

Direct Target Override

For one-time use, you can provide a CompileTarget directly without registration:

import { compile } from '@cortex-js/compute-engine';

const customTarget = {
language: 'custom',
operators: () => ['+', 10],
functions: () => undefined,
var: (id) => id.toUpperCase(),
string: (str) => `"${str}"`,
number: (n) => n.toString(),
indent: 0,
ws: () => ' ',
preamble: '',
};

const result = compile("a + b", { target: customTarget });
console.log(result.code); // → A + B

The target option takes precedence over the to option if both are provided.

Creating Custom Language Targets

To create a custom language target, implement the LanguageTarget interface:

interface LanguageTarget {
/**
* Returns operator mappings for this language.
* Maps operator names to [operator_string, precedence] tuples.
*/
getOperators(): CompiledOperators;

/**
* Returns function mappings for this language.
* Maps function names to language-specific function names or implementations.
*/
getFunctions(): CompiledFunctions;

/**
* Creates a CompileTarget with the specified options.
*/
createTarget(options?: Partial<CompileTarget>): CompileTarget;

/**
* Compiles an expression to a CompilationResult.
* For non-JavaScript targets, this typically returns a result
* with the source code in the `code` property.
*/
compile(
expr: Expression,
options?: CompilationOptions
): CompilationResult;
}

For complete examples of custom targets including RPN (Reverse Polish Notation), Python, and more, see examples/compile-plugin-architecture.js.

Performance Benchmarks

JavaScript vs Python/NumPy

To compare performance across compilation targets, the project includes benchmark scripts:

JavaScript Benchmarks (Node.js):

npm run test compute-engine/compile-performance

Python Benchmarks (generated):

# Generate the Python benchmark script
npm run test compute-engine/compile-python-generate

# Run Python benchmarks (requires NumPy)
python benchmarks/python-performance.py

Expected Results

The benchmarks test the same mathematical expressions across different targets:

TargetPerformanceUse Case
JavaScript Compiled40-2900x faster than evalCPU computation, real-time calculations
Python/NumPyFast for arrays, some overhead for scalarsScientific computing, data analysis
GLSLMassively parallel on GPUGraphics, WebGL shaders

Key Insights:

  • JavaScript compilation is excellent for single-threaded CPU performance
  • Python/NumPy excels at vectorized array operations
  • GLSL enables GPU parallelism for millions of simultaneous operations

Limitations

Precision: Compiled functions use machine-precision (64-bit) floating-point arithmetic only. Arbitrary-precision and symbolic calculations are not available.

Complex numbers: The JavaScript target supports complex arithmetic when the expression involves complex-valued operands (e.g., i, complex-typed symbols). Complex results are returned as { re, im } objects. See Complex Numbers for details and Real-Only Mode to convert complex results to NaN.

Unsupported functions: Most standard mathematical functions are supported, but some cannot be compiled. When compilation fails, compile() returns a CompilationResult with success set to false.

By default, a fallback run function based on the CE's numerical evaluator is provided so the expression still produces a result (at lower performance). Set { fallback: false } to throw instead.

// import { compile, parse } from '@cortex-js/compute-engine'; function compileOrEvaluate(latex) { const result = compile(latex); if (result.success) { return result.run() + " (compiled)"; } else { const evaluated = parse(latex).N(); return evaluated.numericValue + " (evaluated)"; } } // `compile()` can handle this expression console.log(compileOrEvaluate("\\frac{\\sqrt{5}+1}{2}")); // `compile()` cannot handle `Expand`, so it falls back // and we use numerical evaluation with expr.N() console.log(compileOrEvaluate("\\operatorname{Expand}((x+1)^2)"));

Target coverage varies. Not every function that compiles to JavaScript also compiles to GLSL or interval-js. The JavaScript target has the broadest coverage (~120 functions including special functions, statistics, Bessel, and color operations). The GLSL target supports ~80 functions (basic math, trig, hyperbolic, gamma, erf, and color — but not statistics, Bessel, Zeta, LambertW, or iterative constructs like Sum/Product). The interval-js target covers ~60 functions (basic math, trig, hyperbolic, gamma).

When a target fails, callers should fall back to a more capable target (e.g., GLSL → JavaScript, interval-js → JavaScript).